Tesla


2023-05-30

Panasonic’s Delay in 460800 Battery to Cast Shadow over its Alliance with Tesla

Tesla, the driving force behind the next-generation electric vehicle(EV) battery standards, has been vigorously promoting the 46800 cylindrical battery cell in recent years.

Being Tesla’s key collaborator, Panasonic had initially scheduled mass production of these batteries for April this year. However, in a recent announcement, they revealed that their production plans would be delayed by at least a year, with full-scale production not set to kick off until between April and September 2024.

This strategic pivot is aimed at optimizing performance, but what we care about is the implications it might hold for the EV supply chain – could this mean that the strong alliance between these two giants is beginning to waver? And if so, what sort of ripple effect could this have on the relevant market?

Tesla’s secret weapon in the EV price war

Given the capacity of 46800 battery cell is five times that of the 21700 battery, it means fewer cells are required to achieve the same total battery pack capacity.

For instance, a 75kWh-based Model 3 uses 4,416 units of the 21700 battery cells packed in the traditional way of Cell to Module (CTM), which assembles batteries into modules which are then encased into a battery pack and then fitted onto the vehicle’s chassis.

In contrast, a Model Y with the same battery capacity would need only 828 units of the 46800 battery cells, leading to a 14% saving on battery costs. Coupled with Tesla’s integrated chassis technology (CTC), where batteries are not assembled into modules but instead directly encapsulated under the cabin floor, this provides an ultimate, cost-effective solution for Tesla.

When Tesla first announced its 46800 battery plan in 2020, its battery capacity was pioneering among all batteries. Taking advantage of this favorable environment, Tesla has been both expanding their production and involving cylindrical battery manufacturers, like Panasonic, in their comprehensive plans.

Tesla has set up a 46800 battery production line at their Fremont factory in California. As of the end of 2022, their production capacity was about 4GWh, which can only support 50,000 to 60,000 75kWh EVs and is far from their sales volume.

In terms of a long-term strategy, Tesla not only aims to ramp up their production capacity but is also heavily reliant on external suppliers like Panasonic to support its ever-growing demand.

Hence, ever since the launch of Model S in 2012, Panasonic has remained Tesla’s primary supplier of power batteries. And thanks to Tesla’s booming sales, Panasonic has dominated the power battery market for quite a while.

Roadblocks for Tesla and Panasonic’s Alliance

So, what does Panasonic’s delay mean for its position in the market? In fact, as an important chess piece in Tesla’s battery market strategy, Panasonic has been under considerable pressure.

Externally, there’s the relentless price cuts from Tesla. In 2018, as Tesla’s sales skyrocketed, they started purchasing batteries from more suppliers, thereby indirectly pressuring Panasonic to lower prices.

In addition, the internal discord has also been shadowing the project. On one hand, the long-term supply to Tesla has not brought as impressive profit performance as anticipated for Panasonic’s battery business. On the other hand, sticking to Tesla’s technology route, Panasonic has missed a great deal of opportunities to partner with Japanese car makers due to its conservative investments in the mainstream hydrogen energy batteries, which has in turn stirred internal questioning.

Since 2020, both South LGES and CATL have become suppliers to Tesla, causing Panasonic’s market share to fall to third place globally. But even then, Panasonic’s many years of expertise in cylindrical batteries made it Tesla’s Top choice when deciding to manufacture the 46800 battery. This was widely seen as Panasonic’s best chance to regain its leading ground and to solidify long-term partnership with Tesla.

Is Panasonic about to miss out on its prime opportunity?

All in all, we believe that this delay could not only disrupt Tesla’s price war strategy but also make Panasonic miss the golden chance to secure its dominance in the new technology. With multiple battery manufacturers, such as CATL, LGES, and Eve Energy, announcing that they will start mass production of the 46800 battery in 2024 or 2025, Panasonic will face unprecedented competition.

As of Q1 2023, Panasonic has seen its market share fall to fourth place. Obviously, maintaining its industry leadership becomes more of a daunting task for the company in the race. Although they’ve announced plans to build at least two 46800 battery factories in North America, it won’t serve as a panacea for their problems.

Beyond overcoming technical hurdles and expediting mass production, Panasonic also has a mountain to climb in terms of diversifying its customer base, further lessening the risk of an over-reliance on Tesla. These are inevitably long-term challenges that Panasonic cannot sidestep.

2023-05-16

Competitors Turn Partners: Exploring Tesla and BYD’s Collaboration

Tesla, the world’s leading electric vehicle (EV) manufacturer, has announced its collaboration with BYD, a leading player in the EV and battery industry. The partnership involves Tesla incorporating BYD’s lithium iron phosphate (LFP) blade batteries into the rear-wheel-drive entry-level version of the Model Y, which will be produced at Tesla’s Berlin factory in Germany. Deliveries of this model are slated to commence in June 2023. Let’s delve into the significance of this collaboration from the perspectives of both Tesla and BYD.

Tesla’s Perspective

Tesla’s Berlin factory has thus far been responsible for manufacturing the premium variant of the Model Y, equipped with Panasonic’s 21700 lithium-ion batteries. In contrast, the entry-level version of the Model Y had been imported from Tesla’s Gigafactory in Shanghai, China, with CATL’s LFP batteries installed.

With this collaboration, Tesla will now produce the entry-level Model Y directly at its Berlin factory, integrating BYD’s LFP blade batteries with a capacity of 55 kWh. This battery configuration will offer an approximate range of 440 kilometers. Although this variant features a reduced capacity of 5 kWh compared to the CATL battery-equipped Model Y, the BYD LFP blade batteries boast improved energy density. This enhancement results in an increased range per kilowatt-hour, from 7.6 km/kWh to 8 km/kWh.

Additionally, the adoption of BYD’s blade batteries provides Tesla with cost advantages. The blade batteries employ cobalt- and nickel-free battery materials, which are more affordable. Consequently, Tesla stands to save approximately $750 in battery pack costs when considering a battery cost of $150 per kilowatt-hour. Moreover, the square-shaped design of the blade batteries enables tighter and more efficient packaging, leading to higher energy density. This design also facilitates Tesla’s integration of Cell to Chassis (CTC) technology, which reduces packaging material usage and overall costs.

Considering these factors, the decision to utilize BYD’s blade batteries aligns with the cost-effective preferences of the entry-level Model Y’s target consumer group while fulfilling Elon Musk’s commitment to cost control.

BYD’s Perspective

In 2022, BYD overtook Tesla as the world’s largest EV manufacturer, boasting sales of 1.86 million electric vehicles. As a result, BYD’s market share in battery assembly has steadily increased, owing to its self-supply capabilities. As of the first quarter of 2023, BYD stands as the second-largest global supplier of power batteries, with a market share of 16.2%, surpassed only by CATL’s 35%.

Despite BYD’s remarkable growth in the electric vehicle sector, its battery production capacity initially struggled to keep pace. This resulted in a period during which BYD could only fulfill its own demand and was unable to export batteries, impeding the growth of its battery business in terms of customer quantity.

Apart from its use in BYD’s own EVs and the recent collaboration with Tesla for the Model Y, BYD’s batteries primarily find application in Changan Ford vehicles. Furthermore, a staggering 98% of BYD’s electric vehicle sales currently originate from the domestic Chinese market. This high market concentration poses the dual risks of relying excessively on a single market and a single customer for battery sales.

BYD’s inclusion in Tesla’s supply chain with its blade batteries marks a significant step toward diversifying sales risks. Nevertheless, for BYD to maintain its position as the second-largest battery supplier in the future, the company will need to adopt a proactive and diversified market strategy, expanding its presence in the supply chains of various automakers.

(Photo credit: Tesla)

2023-05-02

SiC vs. Silicon Debate: Will the Winner Take All?

The SiC market has been very active lately, with constant news coming from device suppliers and car makers. And there seems to be an ongoing tug-of-war between supply and demand.

Toshiba announced in April the groundbreaking of its power semiconductor fab for SiC in Ishikawa Prefecture, with the first stage beginning in the 2024 fiscal year. This news echoes earlier reports from Japanese media that Toshiba is strengthening the vertical integration throughout SiC equipment, wafers, and devices, and planning to increase the production by three times in 2024 and 10 times by 2026.

Meanwhile, over the past two years, leading companies in the Europe and the US such as Infineon and ST have also accelerated M&A as well as internal expansion for SiC production devices at an unprecedented pace, aiming to expand their SiC-related businesses and maintain their core competitiveness in the market.

Despite aggressive demand-driven expansion plans, the unexpected announcement from Tesla in mid-March that it plans to reduce overall SiC usage by 75% in the next generation of electric vehicle platforms has sparked various speculations in the industry. This move was made without compromising the performance and efficiency of the cars and represents one of the few specific details that Tesla has revealed about its new car plans.

Now here is the question – will the popularity of SiC be a genuine trend, or merely a passing fad that could lead to a potential bubble in the market?

SiC or Si-based solutions?

Compared to IGBT and MOSFET, the dominant technologies in power semiconductor, SiC offers stronger advantages such as low resistance, high temperature and high voltage tolerance that can overcome the technical bottlenecks of EVs by improving battery efficiency and solving component heat dissipation issues. SiC can also make chip design sizes smaller, which means more flexibility in vehicle design.

These advantages have made SiC the most sought-after technology. According to TrendForce, the SiC power device market is expected to grow at a CAGR of 35% to reach $5.33 billion annually from 2022 to 2026, driven by mainstream applications such as electric vehicles and renewable energy.

There is a long-standing debate among the industry about whether SiC will replace IGBTs entirely. What we believe is that SiC may not completely replace IGBTs considering their distinct targeted use scenarios.

In terms of use cases, SiC is particularly suitable for high-frequency, high-voltage applications, especially in the field of new energy vehicles. Traditional Si-based IGBT chips have reached the physical limit in high-voltage fast charging models, making SiC more favorable for new energy vehicles.

However, SiC transistors are expensive due to complex production processes, slow crystal growth, and difficult cutting. Unlike silicon, which can be pulled quickly, SiC crystals grow at a slow rate of 0.2-1mm/hour and are prone to cracking during the cutting process due to their high hardness and brittleness, leading to hundreds of hours of cutting time.

Additionally, SiC transistors also have some drawbacks such as vulnerability to damage and temperature sensitivity, which makes them unsuitable for low-cost and low-power applications.

IGBT, on the contrary, is preferred over SiC in such a field because it is more cost-effective, reliable, and has better capacitance and surge capability for high-power and high-current applications. In certain scenarios, such as DC-DC charging piles, IGBT is irreplaceable due to its cost advantage and suitability.

Could a Hybrid Solution be the Answer?

The premise above can help to explain Tesla’s conflicting decision to cut back on SiC usage.

Tesla’s reluctance to fully adopt SiC technology is mainly due to concerns about reliability and supply chain stability, as evidenced by a mass recall of Model 3 due to issues with SiC components in the rear electric motor inverter.

In addition, the shortage of substrate materials is another challenge facing the SiC industry as a whole, with major manufacturers such as Wolfspeed, Infineon, and ST ramping up production capacity to address the issue. As a result, Tesla is considering alternative ways to mitigate the risks associated with supply chain constraints.

Despite these challenges, SiC remains a promising trend for the EV industry. Even Tesla recognizes its enormous potential commercial value.

In terms of technological innovations, Tesla’s next-generation EVs may feature a novel packaging design for the primary inverter, utilizing a hybrid SiC/Si IGBT packaging approach that leverages the unique strengths of both technologies while avoiding potential pitfalls. This technological advancement poses certain difficulties, but the groundbreaking innovation at the engineering design level is definitely something to look forward to.

Read more:

(Photo credit: Tesla)

2023-04-21

The M&A battle for SiC: Who’s the Top Acquirers?

The compound semiconductor market has been flourishing in recent years thanks to the strong demand from markets such as electric vehicles and renewable energy. This has led to an increase in M&A as companies race to establish their position in the industry.

The market has seen a significant surge in M&A deals over the last few years: from 2006 to 2017, there was only one deal every two years, but since 2018, there have been six deals annually, surpassing historical data.

While SiC and GaN are the top categories for M&A, 21 of the transactions are directly related to SiC. This is because after its development over 20 years, SiC has been able to be mass-produced for market demands, particularly in the automotive industry where SiC has become the mainstream technology.

Vertical Integration driven by Industry Titans

Industry leaders in the US and Europe, such as Wolfspeed, On Semi, II-VI, ST, and Infineon, have started accelerating vertical integration in recent years, as reflected in the frequency of M&A.

The United States has led 12 M&A deals, with only four of them occurring before 2018, and Wolfspeed contributed to three of them. Over the past three years, On-Semi, II-VI, and Macom have led several deals with a focus on SiC’s vertical integration to meet market demands.

In Europe, there were eight M&A deals in total, all of which took place in 2018 and beyond, with ST and Infineon being the major players. Both companies have been accumulating technical strength through strategic acquisition to maintain their leading ground in the SiC power device market.

In 2019 and 2020, ST acquired Norstel AB to bolster its SiC wafer manufacturing capabilities and Exgan to improve the GaN power device design expertise. Similarly, Infineon acquired Siltectra GMbH in 2018 to gain control of the crucial SiC wafer cold split process technology and recently acquired GaN Systems to reinforce its presence in the GaN market.

It’s evident from the cases that the high frequency of M&As in the US and Europe is mainly driven by leading companies in the industry, gradually defining the landscape of the market.

Wolfspeed, which has grown into a leading company after a long period of time, has accumulated enough capital for M&A and gradually been transforming into a platform-type company. Meanwhile, Onsemi, ST, and Infineon, which have traditionally been platform-type companies with established expertise in the field of compound semiconductors, are now ramping up their M&A activities to expand market presence and generate strong growth momentum.

Market Landscape Continues to Change

M&A deals among semiconductor equipment companies are also receiving attention. Recently, ASM and Veeco have successively acquired LPE and Epiluvac, indicating that equipment manufacturers have also realized the huge potential of the SiC market and are accelerating their investment.

Given the rapid technology breakthroughs, the overall SiC power device market is predicted to grow at an annual rate of 41.4% to reach $2.28 billion by 2023 and $5.33 billion by 2026 at 35% annual growth, according to TrendForce’s latest report.

However, with the current market boom comes a new challenge – the supply shortage. One of the biggest obstacles to industry growth is the scarcity of SiC substrate material, despite efforts from companies like STM and Onsemi to ramp up their production.

Manufacturers are now on the hunt for both internal and external sources to keep the supply flowing. While most of the SiC substrate suppliers are expanding, only a few, like Wolfspeed, are controlling the manufacturing capacity for high-end SiC substrates used in automotive main inverters, which worsens the bottleneck in SiC devices’ production for cars.

With that being said, major players must quickly address technology hurdles and supply issues to bridge the market gap. This will inevitably drive intense competition and industry consolidation, and only the ones that can adapt quickly will be thriving in the long run.

Read more:

2023-04-07

Toyota Established SiC Wafer R&D Company to Gain Dominance in the EV Market

Since the 1980s, Toyota collaborated with Denso to conduct research on SiC. In 2014, SiC inverters were installed in Toyota’s Prius and Camry hybrid electric vehicles (HEVs) for driving and on-road testing, confirming a 5-10% improvement in energy efficiency. After this successful testing, Toyota adopted SiC in its hydrogen fuel cell buses that were put into formal operation in 2015 and 2018. At that time, the cost of SiC chips was higher than it is now, so Toyota continued to primarily use Si-IGBT inverters in its hybrid vehicle models.

Model 3 SiC Inverter Sparks Toyota’s Concerns About Electrification

In 2017, the Model 3, equipped with SiC inverters, became the best-selling battery electric vehicle (BEV) on the market due to its high performance and long range. It also contributed to the surge of new BEV sales, which exceeded 1.2 million vehicles in 2018. Since then, many automakers have targeted SiC as the basis for next-generation BEV drivetrain systems, while Toyota continued to adhere to its hybrid electric vehicle (HEV) and hydrogen fuel cell vehicle (FCV) strategies. According to TrendForce, the total new sales of PHEVs and BEVs is estimated to reach approximately 10.63 million vehicles in 2022, while Toyota’s sales in this sub-market are only close to 100,000, accounting for about 1% of the market share, far behind BYD’s 19% and Tesla’s 15%.

In the current EV industry, BEVs and PHEVs have become the mainstream, while HEVs may gradually shrink in the future market. Pressures from the changing market have forced Toyota, which has not fully focused on BEVs and PHEVs in the past, to rethink its overall electrification strategy and accelerate the production capacity and technological layout of key components, such as SiC.

Toyota aims to sell 3.5 million electric vehicles by 2030, and has demonstrated its commitment to electrification through the establishment of a SiC wafer manufacturing technology research company. SiC chips have the potential to improve energy efficiency in electric vehicles, but their high cost is currently a challenge due to low SiC wafer yields in the manufacturing process. QureDA Research’s Dynamic AGE-ing technology could help improve wafer yields and lower chip costs. If successful, this technology, combined with Toyota’s market presence, could enhance the competitiveness of Toyota’s electric vehicles and give them a chance to compete for a leading position in the future electric vehicle market.

(Image credit: Toyota LinkedIn)

  • Page 5
  • 9 page(s)
  • 41 result(s)