SiC


2023-05-03

Chinese Players Rally for Demand Surge in MOSFET, IGBT, and SiC

Chinese semiconductor companies are once again quickly making their presence known in the power semiconductor market, particularly in the fields of MOSFET, IGBT, and SiC.

Among various types of power ICs and power devices, MOSFET and IGBT-based voltage-controlled switching devices have become the mainstream products, accounting for more than 70% of power devices due to their ease of use, fast switching speed, and low power loss. They are mainly used in end markets such as automobiles, industry, and consumer electronics.

On the other hand, SiC can further assist in breakthroughs in EV technology and has become the most popular alternative technology route in the market, with its strong material properties such as low resistance, high temperature resistance, and high voltage resistance.

From IGBT and MOSFET to SiC, there has been a surge in demand in recent years, indicating the enormous growth potential of power semiconductors for automotive use. This has attracted many Chinese players to enter the competition.

IGBT: Explosive Growth for Chinese Players

As the core component of new energy vehicles, demand for IGBT is increasing. Looking at the financial reports of overseas large factories, the top five IGBT chip manufacturers in Q1 of this year still face tight delivery times, with the longest reaching 54 weeks.

The rapid growth of the EV and energy storage markets has resulted in a supply-demand imbalance for SiC MOSFETs. Major international IDM factories’ production capacity won’t be able to meet the demand in the coming years. Consequently, Infineon, STMicroelectronics, and ON Semiconductor are focusing on local supply in Europe and America. This has led to Chinese suppliers replacing automotive IGBTs for the domestic market.

In 2022, the IGBT industry in China saw a surge in demand. After a two-year auto chip shortage starting in 2020, the supply of IGBTs has become even tighter. In the second half of 2022, IGBT surpassed automotive MCU and became the biggest supply bottleneck affecting automotive production expansion.
According to the latest statistics from the China Association of Automobile Manufacturers, China’s new energy vehicles continued to explode in 2022, with production and sales reaching 7.058 million and 6.887 million vehicles, respectively, a year-on-year increase of 96.9% and 93.4%, maintaining the world’s first for eight consecutive years.

Many representative companies in China continue to strengthen their IGBT technology research and development:

  • In the first half of 2022, StarPower Semiconductor developed a new generation of 650V/750V IGBT chips for the new car standard based on the seventh-generation microgroove Trench Field Stop technology, which passed customer verification and began mass production in the second half of 2022.
  • Silan is keeping up with the trend of new energy development and has entered the field of vehicle-grade IGBT modules and SiC MOSFETs through a private placement financing. Its vehicle-grade IGBT and other products have been verified and have been delivered in bulk.

Since the end of 2021, the IGBT capacity of companies such as CRRC Times Electric, Silan, and Huahong Grace has been ready, and their revenue has also been rising. Combining the data of major companies with revenue exceeding 10 billion yuan that have released their 2022 financial reports, the power device companies are CRRC Times Electric, with 18.034 billion yuan, and Hua Run Micro, with 10.06 billion yuan.

MOSFET: Demand Doubles with the Rise of EVs

MOSFETs are used in high-voltage applications, such as DC-DC and OBC, to convert and transmit electrical energy. On average, there are now over 200 MOSFETs per car. As cars become more advanced and incorporate features like ADAS, safety, and entertainment, the number of MOSFETs per car is expected to double to 400 in high-end models.
With major companies such as Renesas gradually withdrawing from the low and medium-voltage MOSFET market, Chinese players have been accelerating their entry into the automotive supply chain. Currently, companies such as Silan and Nexperia are continuously expanding their global market share of MOSFETs, while other companies such as China Resources Microelectronics, Yangjie Electronic, Good-Ark Electronics, Jilin Sino-Microelectronics, NCE Power Co, New Jie Energy, Oriental Semi and Jiejie Microelectronics have been continuously developing in the field of automotive-grade MOSFETs in recent years.

Chinese IDM companies have expanded their market share by offering high-voltage super junction products:

  • Silan has completed the development of a 12-inch high-voltage super junction MOS process platform.
  • China Resources Microelectronics has achieved revenue of over 100 million yuan in the first quarter of 2022 for high-voltage super junction products.
  • Yangjie Electronic has achieved a significant increase in MOS orders for automobiles in the first quarter of 2022.

SiC: Entire Supply Chain Enters the Game

The growth of EV and energy storage markets has been causing a supply shortage in SiC. As major international IDMs are expected to expand their SiC capacity and potentially engage in more M&A activities, Chinese manufacturers are simultaneously make more investments throughout SiC supply chain:

  • IDM: Sanan Optoelectronics, Inventchip, Silan, and Sichain are trying to transform the IDM model by improving their processes but face development obstacles.
  • Foundry: Besides Fabless manufacturers are participating in the SiC market, foundry companies such as X-FAB are also actively developing related businesses, especially Taiwanese manufacturers. After EPISIL Hong Young Semiconductor and ProAsia Semiconductor have also entered the market.

XinYueNeng a new foundry invested by Geely Auto, has also attracted market attention. Its related projects are expected to be put into operation in the second half of this year, and its partner AccoPower is already producing SiC power modules for vehicles.

It’s also important to note the development of the SiC specialized production equipment market. Some key equipment, such as the epitaxial reactor, is experiencing delivery delays, which may impact the expansion plans of suppliers like Tianyu Semiconductor and EpiWorld. On the positive side, it still presents great opportunities for local equipment manufacturers.

Read more:

2023-05-02

SiC vs. Silicon Debate: Will the Winner Take All?

The SiC market has been very active lately, with constant news coming from device suppliers and car makers. And there seems to be an ongoing tug-of-war between supply and demand.

Toshiba announced in April the groundbreaking of its power semiconductor fab for SiC in Ishikawa Prefecture, with the first stage beginning in the 2024 fiscal year. This news echoes earlier reports from Japanese media that Toshiba is strengthening the vertical integration throughout SiC equipment, wafers, and devices, and planning to increase the production by three times in 2024 and 10 times by 2026.

Meanwhile, over the past two years, leading companies in the Europe and the US such as Infineon and ST have also accelerated M&A as well as internal expansion for SiC production devices at an unprecedented pace, aiming to expand their SiC-related businesses and maintain their core competitiveness in the market.

Despite aggressive demand-driven expansion plans, the unexpected announcement from Tesla in mid-March that it plans to reduce overall SiC usage by 75% in the next generation of electric vehicle platforms has sparked various speculations in the industry. This move was made without compromising the performance and efficiency of the cars and represents one of the few specific details that Tesla has revealed about its new car plans.

Now here is the question – will the popularity of SiC be a genuine trend, or merely a passing fad that could lead to a potential bubble in the market?

SiC or Si-based solutions?

Compared to IGBT and MOSFET, the dominant technologies in power semiconductor, SiC offers stronger advantages such as low resistance, high temperature and high voltage tolerance that can overcome the technical bottlenecks of EVs by improving battery efficiency and solving component heat dissipation issues. SiC can also make chip design sizes smaller, which means more flexibility in vehicle design.

These advantages have made SiC the most sought-after technology. According to TrendForce, the SiC power device market is expected to grow at a CAGR of 35% to reach $5.33 billion annually from 2022 to 2026, driven by mainstream applications such as electric vehicles and renewable energy.

There is a long-standing debate among the industry about whether SiC will replace IGBTs entirely. What we believe is that SiC may not completely replace IGBTs considering their distinct targeted use scenarios.

In terms of use cases, SiC is particularly suitable for high-frequency, high-voltage applications, especially in the field of new energy vehicles. Traditional Si-based IGBT chips have reached the physical limit in high-voltage fast charging models, making SiC more favorable for new energy vehicles.

However, SiC transistors are expensive due to complex production processes, slow crystal growth, and difficult cutting. Unlike silicon, which can be pulled quickly, SiC crystals grow at a slow rate of 0.2-1mm/hour and are prone to cracking during the cutting process due to their high hardness and brittleness, leading to hundreds of hours of cutting time.

Additionally, SiC transistors also have some drawbacks such as vulnerability to damage and temperature sensitivity, which makes them unsuitable for low-cost and low-power applications.

IGBT, on the contrary, is preferred over SiC in such a field because it is more cost-effective, reliable, and has better capacitance and surge capability for high-power and high-current applications. In certain scenarios, such as DC-DC charging piles, IGBT is irreplaceable due to its cost advantage and suitability.

Could a Hybrid Solution be the Answer?

The premise above can help to explain Tesla’s conflicting decision to cut back on SiC usage.

Tesla’s reluctance to fully adopt SiC technology is mainly due to concerns about reliability and supply chain stability, as evidenced by a mass recall of Model 3 due to issues with SiC components in the rear electric motor inverter.

In addition, the shortage of substrate materials is another challenge facing the SiC industry as a whole, with major manufacturers such as Wolfspeed, Infineon, and ST ramping up production capacity to address the issue. As a result, Tesla is considering alternative ways to mitigate the risks associated with supply chain constraints.

Despite these challenges, SiC remains a promising trend for the EV industry. Even Tesla recognizes its enormous potential commercial value.

In terms of technological innovations, Tesla’s next-generation EVs may feature a novel packaging design for the primary inverter, utilizing a hybrid SiC/Si IGBT packaging approach that leverages the unique strengths of both technologies while avoiding potential pitfalls. This technological advancement poses certain difficulties, but the groundbreaking innovation at the engineering design level is definitely something to look forward to.

Read more:

(Photo credit: Tesla)

2023-04-21

The M&A battle for SiC: Who’s the Top Acquirers?

The compound semiconductor market has been flourishing in recent years thanks to the strong demand from markets such as electric vehicles and renewable energy. This has led to an increase in M&A as companies race to establish their position in the industry.

The market has seen a significant surge in M&A deals over the last few years: from 2006 to 2017, there was only one deal every two years, but since 2018, there have been six deals annually, surpassing historical data.

While SiC and GaN are the top categories for M&A, 21 of the transactions are directly related to SiC. This is because after its development over 20 years, SiC has been able to be mass-produced for market demands, particularly in the automotive industry where SiC has become the mainstream technology.

Vertical Integration driven by Industry Titans

Industry leaders in the US and Europe, such as Wolfspeed, On Semi, II-VI, ST, and Infineon, have started accelerating vertical integration in recent years, as reflected in the frequency of M&A.

The United States has led 12 M&A deals, with only four of them occurring before 2018, and Wolfspeed contributed to three of them. Over the past three years, On-Semi, II-VI, and Macom have led several deals with a focus on SiC’s vertical integration to meet market demands.

In Europe, there were eight M&A deals in total, all of which took place in 2018 and beyond, with ST and Infineon being the major players. Both companies have been accumulating technical strength through strategic acquisition to maintain their leading ground in the SiC power device market.

In 2019 and 2020, ST acquired Norstel AB to bolster its SiC wafer manufacturing capabilities and Exgan to improve the GaN power device design expertise. Similarly, Infineon acquired Siltectra GMbH in 2018 to gain control of the crucial SiC wafer cold split process technology and recently acquired GaN Systems to reinforce its presence in the GaN market.

It’s evident from the cases that the high frequency of M&As in the US and Europe is mainly driven by leading companies in the industry, gradually defining the landscape of the market.

Wolfspeed, which has grown into a leading company after a long period of time, has accumulated enough capital for M&A and gradually been transforming into a platform-type company. Meanwhile, Onsemi, ST, and Infineon, which have traditionally been platform-type companies with established expertise in the field of compound semiconductors, are now ramping up their M&A activities to expand market presence and generate strong growth momentum.

Market Landscape Continues to Change

M&A deals among semiconductor equipment companies are also receiving attention. Recently, ASM and Veeco have successively acquired LPE and Epiluvac, indicating that equipment manufacturers have also realized the huge potential of the SiC market and are accelerating their investment.

Given the rapid technology breakthroughs, the overall SiC power device market is predicted to grow at an annual rate of 41.4% to reach $2.28 billion by 2023 and $5.33 billion by 2026 at 35% annual growth, according to TrendForce’s latest report.

However, with the current market boom comes a new challenge – the supply shortage. One of the biggest obstacles to industry growth is the scarcity of SiC substrate material, despite efforts from companies like STM and Onsemi to ramp up their production.

Manufacturers are now on the hunt for both internal and external sources to keep the supply flowing. While most of the SiC substrate suppliers are expanding, only a few, like Wolfspeed, are controlling the manufacturing capacity for high-end SiC substrates used in automotive main inverters, which worsens the bottleneck in SiC devices’ production for cars.

With that being said, major players must quickly address technology hurdles and supply issues to bridge the market gap. This will inevitably drive intense competition and industry consolidation, and only the ones that can adapt quickly will be thriving in the long run.

Read more:

2023-03-06

Tesla Plans to Reduce SiC Content by 75% for Its Next EV Platform, so New Package Solution and Trench MOSFET Could Be Crucial in Achieving This Feat

Tesla recently announced that its next-generation EV platform will reflect a 75% reduction in SiC components, though this reduction will be made without compromising vehicle performance and safety. This announcement is one of the very few specific details that Tesla has provided to the public about its plan for the development of its future vehicle models. Therefore, it has also trigger a variety of speculations across the automotive industry. According to TrendForce’s investigation, Tesla does not appear to have much confidence in the stability of the supply chain for SiC components. In the past few years, Tesla has been forced to initiate several recalls for the Model 3. One official reason given for the recalls was that the inverters of some of the Model 3 had power semiconductor components with minor manufacturing differences. As a result, these inverters could malfunction after a period of operation and would not able to perform the regular task of current control. This explanation directly points to a quality issue with the SiC components that Tesla has procured for its vehicles.

Additionally, a production capacity crunch for substrates has been the most significant challenge in the development of the market for SiC components. The major suppliers for SiC components and SiC substrates such as Wolfspeed, Infineon, and STMicroelectronics are currently adding a lot more production capacity. At the same time, Tesla is proceeding with the strategy of diversifying its suppliers for SiC components in order to minimize the risk of disruptions in the supply chain.

SiC components are certainly a key category of automotive electronic components that EV manufacturers like Tesla are going to consider when building their future vehicle models. Therefore, in the context of technological advancements, TrendForce believes that Tesla could adopt a hybrid SiC-Si IGBT package for the inverter of its next-generation EV platform. However, switching to such solution will entail disruptive innovations at the engineering and design levels, so this transition will raise many challenges. Also, regarding SiC MOSFETs that have been a critical part of today’s EVs, TrendForce anticipates that their mainstream structural design will transition from planar to trench. Currently, Infineon, ROHM, and BOSCH are the main suppliers for trench SiC MOSFETs.

On the whole, the hybrid SiC-Si IGBT package and trench SiC MOSFETs are technologies that can substantially reduce the total cost of SiC components for a vehicle. They also reduce the complexity and cost of an entire vehicle platform. These benefits, in turn, can help raise the penetration rate of SiC components in the low-end and midrange segments of the EV market. On the other hand, the widening adoption of SiC components could affect the market share of Si IGBTs.

In the market for automotive SiC components, Tesla has been acting as a major indicator of demand and product development trends. Therefore, the semiconductor industry has been paying close attention to this carmaker’s activities. Since Tesla has so far given very few details about its next-generation EV platform, TrendForce says more observations are needed to determine the reasons behind the reduction in SiC content.

2022-09-15

Market Value of SiC Power Semiconductors Estimated to Reach US$1.589 billion in 2022, European and US IDMs Retain Market Hegemony

Looking at the development of the global SiC (silicon carbide) industry, IDMs in Europe and the United States occupy an absolute leading position, with the United States accounting for more than half of the market share in the substrate material sector. In order to ensure long-term and stable development of the SiC business, major manufacturers have also successively intervened in key upstream substrate materials in an effort to control the supply chain. Therefore, vertical integration has become an important trend in the development of the SiC industry. The global market value of SiC power semiconductors is estimated to be approximately US$1.589 billion in 2022 and will reach US$5.302 billion by 2026, with a CAGR of 35%.

Wolfspeed holds more than half the world’s SiC substrate market share and is first to move to 8-inch wafers

SiC substrates are characterized by difficult growth conditions, arduous processing, and high technical thresholds, which have become a key constraint on downstream production capacity. At present, only a few manufacturers such as Wolfspeed, ROHM, ON Semi, and STM have the ability to independently produce SiC crystals. From the perspective of SiC substrate market share in 2021, the leading players in order of market share are: Wolfspeed at 62%, II-VI at 14%, SiCrystal at 13%, SK Siltron at 5%, and TankeBlue at 4%.

Increasing the number of components on a single wafer is one of the main methods of further reducing the cost of SiC power components, so the industry is fully promoting 8-inch transformation. 8-inch SiC wafers have issues such as difficult material growth, laborious dicing, and losses during dicing. At this stage, yield rate is low. Therefore, 8-inch SiC wafers will not have much impact on the industry in the short term but, in the long run, with breakthroughs in material growth and process yield, the final chip cost of 8-inch wafers will inevitably present great advantages.

SiC MOSFET market highly competitive, STM comes out on top

With the successful application of high-quality 6H-SiC and 4H-SiC epitaxial layer growth technology in the 1990s, the research and development of various SiC power components entered a period of rapid development, leading to their current ubiquity in sectors such as the automotive and industrial fields. From the perspective of competition patterns in the SiC power component market, as Tesla’s first SiC supplier, STM took first place in 2021 with a market share of 41%, Infineon took second place with 22%, followed by Wolfspeed, ROHM, ON Semi and other manufacturers.

TrendForce indicates, from the perspective of SiC MOSFET technology, trench structure’s powerful cost and performance advantages will see it become the mainstream technology in the future. Infineon and ROHM have been working on this a long time and these two companies have successively introduced this structure to the market as core products. STM, Wolfspeed, and On Semi still employ planar structures at this stage but their next generation products will also move to trench structures.

(Image credit: Pixabay)

  • Page 5
  • 6 page(s)
  • 28 result(s)