Automotive Applications Projected to Account for More Than 3% of Total DRAM Bit Consumption in 2024 Owing to Autonomous Vehicle Industry Growth, Says TrendForce

There are four major categories of automotive DRAM applications, including infotainment, ADAS, telematics, and D-clusters (digital instrument clusters), according to TrendForce’s latest investigations. Of the four categories, infotainment applications require the highest DRAM content, although DRAM consumption per vehicle across all four categories remains relatively low at the moment. In contrast to ADAS, infotainment applications present a lower barrier to entry for companies, since current legislations and automotive safety standards governing infotainment are not as stringent, making infotainment a highly attractive market for various semiconductor companies and memory suppliers. TrendForce expects infotainment to remain the primary driver of automotive DRAM consumption through 2024, while all four automotive DRAM applications will together likely comprise more than 3% of total DRAM consumption as autonomous driving technology progresses toward higher levels. As such, automotive DRAM applications represents an emerging sector whose potential for growth should not be underestimated.

TrendForce further indicates that the safety requirements of automotive parts are far higher than those of consumer electronics in terms of both quality and durability. As a result, the release of new vehicle models may take up to 3-5 years from development and verification to release. Vehicles still under development are therefore likely to greatly surpass existing models in terms of both memory content and specifications.

Infotainment will comprise the majority of automotive DRAM consumption, while total automotive DRAM consumption is still relatively low

Infotainment applications represent the highest bit consumption among the major automotive DRAM applications, due to the computing demand of basic media entertainment functionalities in vehicles now. However, most vehicles with these functionalities require only about 1-2GB (gigabytes) of DRAM, which is the current mainstream, since infotainment applications are still relatively basic. As infotainment systems evolve towards higher image qualities and higher video bitrates, solutions requiring 4GB in DRAM content are also under development, with high-end systems transitioning to 8GB in DRAM content. On the other hand, given the close viewing distance involved in automotive infotainment, video bitrates must be sufficiently high to minimize lag. DRAM specifications for infotainment applications are therefore gradually shifting from DDR3 2/4Gb (gigabits) to LPDDR4 8Gb in order to satisfy the high data transfer speed and bandwidth required to achieve a sufficiently high video bitrate and optimal viewing experience.

With regards to ADAS, development is currently divided into two architectures: centralized vs. decentralized (or distributed) systems. Decentralized systems include such devices as reverse parking sensors, which require about 2/4Gb of DRAM. Centralized systems, however, require 2/4GB of DRAM, since data collected from various sensors located throughout the vehicle are transferred to and computed in a central control unit in centralized ADAS. Most vehicles with autonomous driving capabilities currently available on the market are still equipped with ADAS levels 1-2 and therefore require relatively low DRAM content. Going forward, as the development of autonomous driving technologies moves to level 3 and beyond, along with the potential inclusion of AI functionalities, vehicles will need to be able to integrate and process enormous amounts of data collected from sensors in real-time, as well as perform immediate decision-making with the collected data. Given the high bandwidth required for such operations, there will be a corresponding increase in automotive demand for higher-spec DRAM as well, and automotive DRAM for ADAS applications is expected to transition from DDR3 to LPDDR4/4X and even LPDDR5 or GDDR5/HBM later on, though this transition will require more time before it can take place, due to existing regulations.

The mainstream memory products used for telematics, or automotive communication systems, are MCP (Multi Chip Package) solutions. Due to the frequency and compatibility requirements of baseband processors contained in these systems, all telematics applications require the use of LPDRAM. As V2V and V2X gradually become necessities in the auto industry, automakers will place a high importance on memory bandwidth, meaning automotive DRAM for telematics will gradually shift from mainstream LPDDR2 solutions to LPDDR4/LPDDR5. Even so, the growth of telematics will depend on the pace of global 5G infrastructure build-out, since telematics requires 5G networks for fast peer-to-peer connections. As for D-clusters, DRAM bit consumption per vehicle for this application category comes to either 2Gb or 4Gb, depending on the individual vehicle’s degree of digitization for its instrumental panel. However, DRAM consumption for D-clusters is not expected to undergo significant future growths, and D-clusters may potentially be merged with infotainment into a single centralized system going forward.

For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at


Automakers Score Remarkable Performances in Top Five Ranking of EV Sales in 2020 Thanks to Affordable Models, Says TrendForce

Global sales of NEV (new energy vehicles, which include both BEV and PHEV) skyrocketed in the final two months of 2020, with various models setting historical sales records, according to TrendForce’s latest investigations. TrendForce estimates total NEV sales for 2020 at 2.9 million units, a 43% increase YoY, and further expects yearly sales to reach 3.9 million units in 2021. However, as the current shortage of automotive chips has had a considerable impact on the auto industry, some uncertainties still exist in the forecast of EV sales.

With regards to the BEV market, Tesla primarily focused on marketing the Model 3 as its key model for 2020. The automaker took leadership position with a 24.5% market share last year, while the Model Y is expected to be key to securing its continued leadership in 2021 primarily because China has issued a sales permit allowing the Model Y to be exempt from purchase tax. Furthermore, Tesla was able to catch its competitors off guard by discounting Model Y prices by 30% on the first day of 2021. Volkswagen took second place in the rankings due to not only the excellent market reception of the e-Golf, but also the remarkable sales figures set by the ID.3 in 2H20, which helped Volkswagen stabilize its market share. Incidentally, as the ID.4 is set to hit the market later on, it is expected to make meaningful contributions to Volkswagen’s overall EV sales in 2021 instead of 2020.

BYD derives its competitive advantage from having a comprehensive model lineup. The Chinese company comfortably took third place with a 6.4% market share. Conversely, fourth-ranked Wuling Hongguang became the dark horse of 2020 by fielding a single EV model, the Hongguang Mini. Not only was the Hongguang Mini attractively priced, but the Chinese government also made a heavy push for NEV sales in China’s rural areas. Both of these factors allowed the Hongguang Mini to become one of the global top sellers within six months of its release. Hot on the heels of Wuling Hongguang is Renault, which took fifth place in the ranking. Renault was able to score a 5.6% market share thanks to its longstanding best seller ZOE. Although other models, including the Nissan Leaf and Hyundai Kona, also posted remarkable sales performances last year, their respective automakers did not place on the top five list because these automakers each had total EV sales that fell short of the five automakers on the list.

On the other hand, the top PHEV manufacturers were neck and neck in terms of ranking by market share. BMW and Mercedes-Benz each possessed a 13% market share, followed by Volvo with 12%. Fourth-ranked Volkswagen and fifth-ranked Audi registered a 10% market share and 6% market share, respectively.

TrendForce indicates that China and Europe are perfect examples of EV markets propelled by government policies. For instance, European automakers have adopted a proactive position to expand their EV lineups as a result of the stringent emissions standards set by the EU, and these automakers have subsequently been aiming to achieve zero carbon emissions or increase the share of EVs in their total vehicle sales. Apart from China and Europe, the US is yet another market where policies may have a positive effect on EV sales. After winning the 2020 presidential election, Biden is now set to launch his clean energy proposal, which includes replacing the US government’s existing fleet with EVs, removing the previously set ceiling on federal tax credits for EV purchases, and offering consumer tax incentives to replacing their conventional fossil fuel vehicles with EVs, among other actions. If these proposed actions were eventually implemented, TrendForce believes they would be able to drive up EV sales in the US.

  • Page 6
  • 6 page(s)
  • 27 result(s)