According to TrendForce’s “2024 Global GaN Power Device Market Analysis Report”, the development of the GaN power device industry is expected to accelerate once again as Infineon and Texas Instruments allocate more resources into GaN technology.
In 2023, the market size of global GaN power device was around USD 271 million, and it is projected to grow to USD 4.376 billion by 2030 at a compound annual growth rate (CAGR) of 49%.
Notably, the proportion of non-consumer applications is expected to increase from 23% in 2023 to 48% by 2030, with automobile, data center, and motor drive being the core application scenarios.
The evolution of AI technology has driven the continuous increase in computing power demand, making the power consumption of CPU and GPU an increasingly striking issue. To meet the requirements of more advanced AI computations, server power supply is required to further enhance efficiency and power density, and thus, GaN has emerged as a key solution.
Delta, the world’s largest server power supply provider, holds nearly 50% of the market share. Observing the advancement of its server power supplies, the power density has increased from 33.7W/in³ to 100.3W/in³ over the past decade, while power levels has reached 3.2kW and even 5.5kW, and the next generation is expected to exceed 8kW.
TrendForce’s research indicates that AI server is expected to account for 12.2% of overall server shipment in 2024, an increase of ~3.4% from 2023, while the annual growth rate for general server shipment is only 1.9%.
In face of such an attractive opportunity, both Infineon and Navitas Semiconductor have announced technical roadmaps for AI data center this year.
Infineon highlights the significant advantages of combining liquid cooling technology with GaN at lower junction temperature, which will enable data center to maximize efficiency, meet the growing power demands, and overcome the challenges posed by server heat increase.
In motor drive applications like robotics, the potential of GaN is gradually emerging. Compared to industrial robots, humanoid robots have a significantly higher degree of freedom (DoF), greatly increasing the demand for motor drivers.
It’s learned that the joint modules of humanoid robots bear the main tasks of exertion and braking. To achieve higher explosive power, motor drivers with high power density, high efficiency, and high responsiveness are needed. As a result, GaN has attracted market attention, especially in load-bearing areas like the legs.
Texas Instruments and EPC (Efficient Power Conversion) have been dedicated to driving GaN’s application in the motor drive field, drawing new players into the market.
Robotics is expected to embrace a future beyond imagination, where precise, fast, and powerful motion capabilities are crucial, and the motors driving these movements will inevitably advance forward, which will be a boon for GaN.
While SiC thrives in the automotive industry, GaN is also gaining traction in this field, with on-board chargers (OBC) considered the best entry point.
The first automotive-grade GaN power product meeting AEC-Q101 standard was released by Transphorm (now Renesas) in 2017, and several manufacturers have since introduced a wide range of automotive-grade products so far.
Overall, although GaN still faces several technical challenges in entering inverter and OBC power system, it is believed that with continuous investment from major automotive chip companies like Infineon and Renesas, GaN will soon become a key component in automotive power systems.
Consumer Electronics still holds the biggest proportion among GaN power device applications, in which GaN’s footprint is quickly expanding from fast chargers to home appliances and smartphones.
Specifically, GaN has been widely adopted in low-power smartphone fast chargers, and next will enter into more demanding applications like notebook and home appliance power supplies. Other potential consumer applications include Class-D audio, smartphone over-voltage protection (OVP), etc.
TrendForce believes that GaN power device industry is at a critical breakthrough moment, with several potential applications simultaneously boosting rapid growth.
Moreover, new structures and processes are expected to be introduced in built on better reliability to get into more complex high-power, high-frequency scenarios, injecting new momentum into the industry.
In terms of industry development and market landscape, Fabless companies have been particularly active in the past.
However, as the industry continues to consolidate and the application markets gradually open up, traditional IDM (integrated device manufacturer) giants are expected to gain significant influence, bringing new major changes to the future landscape of the industry.
Read more
(Photo credit: Infineon)